Granule neurons generated during development extend divergent axon collaterals to hippocampal area CA3.
نویسندگان
چکیده
Most excitatory intrahippocampal pathways are characterized by significant, highly ordered projections into the long, or septotemporal, hippocampal axis. However, the mossy fiber system, the excitatory projection by which the dentate gyrus projects to hippocampal area CA3, is considered an exception, being organized to innervate exclusively transversely oriented cortical layers of the hippocampus. In the present study, the anatomy of the rat mossy fiber system was investigated using axonal tracing techniques, with an emphasis on determining its projection pattern into the long hippocampal axis. To this end, we used dual ipsilateral retrograde tracer injections to determine whether individual granule cells extend divergent axon collaterals to septotemporally distinct levels of hippocampal area CA3. We combined this technique with the fluorescent immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU), a marker of granule cell precursors and their progeny, to address whether the divergence of mossy fiber collaterals within area CA3 might by related to ontogenic gradients in granule cell genesis. We observed single granule neurons that had retrogradely transported both tracers, indicating that they had axon collaterals passing through or terminating within the distinct levels of area CA3 into which tracer had been injected. By using BrdU labeling, we identified divergent granule neurons that were produced during embryonic and postnatal development. We observed no adult-generated granule neurons with significantly diverging mossy fiber collaterals. However, many fewer cells were labeled with BrdU in adult-exposed animals. Because of this smaller sample, we cannot rule out the possibility that small numbers of divergent adult-generated granule cells exist. We conclude that a proportion of the hippocampal mossy fiber projection extends septotemporally divergent axon collaterals to hippocampal area CA3.
منابع مشابه
Rapid extension of axons into the CA3 region by adult-generated granule cells.
The dentate gyrus continues to produce granule neurons throughout adulthood. The present study examined the extension of axons by adult-generated granule neurons into hippocampal area CA3. We injected the fluorescent retrograde tracers Fast blue (FB) and FluoroRuby (FR) into area CA3 of adult male rats at various times after the administration of 5'-bromo-2'-deoxyuridine (BrdU), a marker of pro...
متن کاملThe hippocampal CA3 network: an in vivo intracellular labeling study.
The intrahippocampal distribution of axon collaterals of individual CA3 pyramidal cells was investigated in the rat. Pyramidal cells in the CA3 region of the hippocampus were physiologically characterized and filled with biocytin in anesthetized animals. Their axonal trees were reconstructed with the aid of a drawing tube. Single CA3 pyramidal cells arborized most extensively in the CA1 region,...
متن کاملMossy fiber sprouting as a potential therapeutic target for epilepsy.
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate hilus and abnormally innervate the de...
متن کاملDevelopment of Adult-Generated Cell Connectivity with Excitatory and Inhibitory Cell Populations in the Hippocampus.
New neurons are generated continuously in the subgranular zone of the hippocampus and integrate into existing hippocampal circuits throughout adulthood. Although the addition of these new neurons may facilitate the formation of new memories, as they integrate, they provide additional excitatory drive to CA3 pyramidal neurons. During development, to maintain homeostasis, new neurons form prefere...
متن کاملEffect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats
Objective(s):To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 452 4 شماره
صفحات -
تاریخ انتشار 2002